A uniformly converging scheme for fractal conservation laws

نویسندگان

  • Jérôme Droniou
  • Espen R. Jakobsen
چکیده

The fractal conservation law ∂tu + ∂x( f (u)) + (−∆)α/2u = 0 changes characteristics as α → 2 from non-local and weakly diffusive to local and strongly diffusive. In this paper we present a corrected finite difference quadrature method for (−∆)α/2 with α ∈ [0,2], combined with usual finite volume methods for the hyperbolic term, that automatically adjusts to this change and is uniformly convergent with respect to α ∈ [η ,2] for any η > 0. We provide numerical results which illustrate this asymptotic-preserving property as well as the non-uniformity of previous finite difference or finite volume type of methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A total variation diminishing high resolution scheme for nonlinear conservation laws

In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...

متن کامل

A new total variation diminishing implicit nonstandard finite difference scheme for conservation laws

In this paper, a new implicit nonstandard finite difference scheme for conservation laws, which preserving the property of TVD (total variation diminishing) of the solution, is proposed. This scheme is derived by using nonlocal approximation for nonlinear terms of partial differential equation. Schemes preserving the essential physical property of TVD are of great importance in practice. Such s...

متن کامل

Variational Principle for the Generalized KdV-Burgers Equation with Fractal Derivatives for Shallow Water Waves

The unsmooth boundary will greatly affect motion morphology of a shallow water wave, and a fractal space is introduced to establish a generalized KdV-Burgers equation with fractal derivatives. The semi-inverse method is used to establish a fractal variational formulation of the problem, which provides conservation laws in an energy form in the fractal space and possible solution structures of t...

متن کامل

A Numerical Method for Fractal Conservation Laws

We consider a fractal scalar conservation law, that is to say, a conservation law modified by a fractional power of the Laplace operator, and we propose a numerical method to approximate its solutions. We make a theoretical study of the method, proving in the case of an initial data belonging to L∞ ∩ BV that the approximate solutions converge in L∞ weak-∗ and in Lp strong for p < ∞, and we give...

متن کامل

Stabilisation of hyperbolic conservation laws using conservative finite–volume schemes

We discuss numerical stabilisation of dynamics governed by nonlinear hyperbolic conservation laws through feedback boundary conditions. Using a discrete Lyapunov function we prove exponential decay of the discrete solution to first– order finite volume schemes in conservative form. Decay rates are established for a large class of finite volume schemes including the Lax–Friedrichs scheme. Theore...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014